Python DSA (Data Structures and Algorithms) Syllabus
- Get link
- X
- Other Apps
Python DSA (Data Structures and Algorithms) Notes
1. Introduction to DSA in Python
- Data Structure: Organizes data for efficient operations.
- Algorithm: A set of steps to solve a problem.
- Why DSA? Improves efficiency and optimizes performance.
2. Time and Space Complexity
- Big-O Notation: Measures algorithm performance.
- Common Complexities:
- O(1) – Constant Time
- O(log n) – Logarithmic Time
- O(n) – Linear Time
- O(n log n) – Log-Linear Time
- O(n²) – Quadratic Time
- O(2ⁿ) – Exponential Time
- Example:
def constant_time(arr): return arr[0] # O(1) def linear_time(arr): for item in arr: # O(n) print(item)
3. Lists and Strings
Lists (Dynamic Arrays)
- Declaration:
arr = [1, 2, 3, 4]
- Operations:
arr.append(5) # O(1) arr.insert(1, 10) # O(n) arr.remove(3) # O(n) arr.pop() # O(1)
Strings
- Immutable in Python
- Common Operations:
s = "Hello" print(s[0]) # Accessing character print(s[::-1]) # Reversing string print(s.upper()) # Convert to uppercase
4. Linked List
- Singly Linked Listclass Node:
def __init__(self, data): self.data = data self.next = None class LinkedList: def __init__(self): self.head = None
- Operations: Insertion, Deletion, Traversal, Reversal.
5. Stacks and Queues
Stack (LIFO)
stack = []stack.append(10) # Push
stack.pop() # Pop
Queue (FIFO)
from collections import deque
queue = deque()
queue.append(10) # Enqueue
queue.popleft() # Dequeue
6. Recursion
- Factorial Exampledef factorial(n):
if n == 0: return 1 return n * factorial(n - 1)
- Tail Recursion vs Head Recursion
7. Trees
- Binary Treeclass TreeNode:
def __init__(self, value): self.value = value self.left = None self.right = None
- Traversals:
- Inorder (L, Root, R)
- Preorder (Root, L, R)
- Postorder (L, R, Root)
8. Graphs
- Representations:graph = {
'A': ['B', 'C'], 'B': ['A', 'D', 'E'], 'C': ['A', 'F'], 'D': ['B'], 'E': ['B', 'F'], 'F': ['C', 'E'] }
- Graph Traversals:
- BFS (Breadth-First Search)
- DFS (Depth-First Search)
9. Searching and Sorting Algorithms
Searching:
def binary_search(arr, target):left, right = 0, len(arr) - 1 while left <= right: mid = (left + right) // 2 if arr[mid] == target: return mid elif arr[mid] < target: left = mid + 1 else: right = mid - 1 return -1
Sorting Algorithms:
- Bubble Sort
def bubble_sort(arr):n = len(arr) for i in range(n): for j in range(0, n-i-1): if arr[j] > arr[j+1]: arr[j], arr[j+1] = arr[j+1], arr[j]
- Merge Sort
def merge_sort(arr):if len(arr) > 1: mid = len(arr) // 2 L, R = arr[:mid], arr[mid:] merge_sort(L) merge_sort(R) i = j = k = 0 while i < len(L) and j < len(R): if L[i] < R[j]: arr[k] = L[i] i += 1 else: arr[k] = R[j] j += 1 k += 1
10. Dynamic Programming (DP)
- Memoization (Top-Down)def fib(n, memo={}):
if n in memo: return memo[n] if n <= 1: return n memo[n] = fib(n-1, memo) + fib(n-2, memo) return memo[n]
- Tabulation (Bottom-Up)def fib(n):
dp = [0, 1] for i in range(2, n+1): dp.append(dp[i-1] + dp[i-2]) return dp[n]
11. Hashing
- Using Python Dictionaryhashmap = {}
hashmap["name"] = "Alice" print(hashmap["name"]) # Output: Alice
Assessment: Regular Tests, Assignments, and Final Project Evaluation
Certification: Certificate of Completion from Disha Institute
Number of Days Depends on your practice and feedback. The more you practice and review your work, the faster you will complete the course.
For Batch time and Fess contact to Below Address and Number.
(MCA / Bsc. I.T / ‘A’ / ‘O’ / CCC / Govt. Certified Domain Skill Trainer )
Disha Institute 153 Vijay Nagar Opp. Rg Pg College W.K Road Meerut
(9411617329 , 9458516690)
- Get link
- X
- Other Apps
Comments
Post a Comment