Python DSA (Data Structures and Algorithms) Syllabus

Python DSA (Data Structures and Algorithms) Notes

1. Introduction to DSA in Python

  • Data Structure: Organizes data for efficient operations.
  • Algorithm: A set of steps to solve a problem.
  • Why DSA? Improves efficiency and optimizes performance.

2. Time and Space Complexity

  • Big-O Notation: Measures algorithm performance.
  • Common Complexities:
    • O(1) – Constant Time
    • O(log n) – Logarithmic Time
    • O(n) – Linear Time
    • O(n log n) – Log-Linear Time
    • O(n²) – Quadratic Time
    • O(2ⁿ) – Exponential Time
  • Example:

    def constant_time(arr): return arr[0] # O(1) def linear_time(arr): for item in arr: # O(n) print(item)

3. Lists and Strings

Lists (Dynamic Arrays)

  • Declaration: arr = [1, 2, 3, 4]
  • Operations:

    arr.append(5) # O(1) arr.insert(1, 10) # O(n) arr.remove(3) # O(n) arr.pop() # O(1)

Strings

  • Immutable in Python
  • Common Operations:

    s = "Hello" print(s[0]) # Accessing character print(s[::-1]) # Reversing string print(s.upper()) # Convert to uppercase

4. Linked List

  • Singly Linked List
    class Node:
    def __init__(self, data): self.data = data self.next = None class LinkedList: def __init__(self): self.head = None
  • Operations: Insertion, Deletion, Traversal, Reversal.

5. Stacks and Queues

Stack (LIFO)

stack = []
stack.append(10) # Push stack.pop() # Pop

Queue (FIFO)


from collections import deque queue = deque() queue.append(10) # Enqueue queue.popleft() # Dequeue

6. Recursion

  • Factorial Example
    def factorial(n):
    if n == 0: return 1 return n * factorial(n - 1)
  • Tail Recursion vs Head Recursion

7. Trees

  • Binary Tree
    class TreeNode:
    def __init__(self, value): self.value = value self.left = None self.right = None
  • Traversals:
    • Inorder (L, Root, R)
    • Preorder (Root, L, R)
    • Postorder (L, R, Root)

8. Graphs

  • Representations:
    graph = {
    'A': ['B', 'C'], 'B': ['A', 'D', 'E'], 'C': ['A', 'F'], 'D': ['B'], 'E': ['B', 'F'], 'F': ['C', 'E'] }
  • Graph Traversals:
    • BFS (Breadth-First Search)
    • DFS (Depth-First Search)

9. Searching and Sorting Algorithms

  • Searching:

    def binary_search(arr, target):
    left, right = 0, len(arr) - 1 while left <= right: mid = (left + right) // 2 if arr[mid] == target: return mid elif arr[mid] < target: left = mid + 1 else: right = mid - 1 return -1
  • Sorting Algorithms:

    • Bubble Sort
    def bubble_sort(arr):
    n = len(arr) for i in range(n): for j in range(0, n-i-1): if arr[j] > arr[j+1]: arr[j], arr[j+1] = arr[j+1], arr[j]
    • Merge Sort
    def merge_sort(arr):
    if len(arr) > 1: mid = len(arr) // 2 L, R = arr[:mid], arr[mid:] merge_sort(L) merge_sort(R) i = j = k = 0 while i < len(L) and j < len(R): if L[i] < R[j]: arr[k] = L[i] i += 1 else: arr[k] = R[j] j += 1 k += 1

10. Dynamic Programming (DP)

  • Memoization (Top-Down)
    def fib(n, memo={}):
    if n in memo: return memo[n] if n <= 1: return n memo[n] = fib(n-1, memo) + fib(n-2, memo) return memo[n]
  • Tabulation (Bottom-Up)
    def fib(n):
    dp = [0, 1] for i in range(2, n+1): dp.append(dp[i-1] + dp[i-2]) return dp[n]

11. Hashing

  • Using Python Dictionary
    hashmap = {}
    hashmap["name"] = "Alice" print(hashmap["name"]) # Output: Alice

Assessment: Regular Tests, Assignments, and Final Project Evaluation

Certification: Certificate of Completion from Disha Institute

 

Number of Days Depends on your practice and feedback. The more you practice and review your work, the faster you will complete the course.

For Batch time and Fess contact to Below Address and Number.

Zamanat Sir

(MCA / Bsc. I.T / ‘A’ / ‘O’ / CCC / Govt. Certified  Domain Skill Trainer )

    

Disha Institute 153 Vijay Nagar Opp. Rg Pg College W.K Road Meerut 

(9411617329 , 9458516690) 

Comments

Popular posts from this blog

Advanced Excel Syllabus

SYNTAX OF ALL PROGRAMMING LANGUAGES

Most Important Question and Answer for O Level Exam (Best of Luck to All O Level Students)